Canonical Calculi with (n, k)-ary Quantifiers
نویسندگان
چکیده
Propositional canonical Gentzen-type systems, introduced in [2], are systems which in addition to the standard axioms and structural rules have only logical rules in which exactly one occurrence of a connective is introduced and no other connective is mentioned. [2] provides a constructive coherence criterion for the non-triviality of such systems and shows that a system of this kind admits cut-elimination iff it is coherent. The semantics of such systems is provided using two-valued non-deterministic matrices (2Nmatrices). [23] extends these results to systems with unary quantifiers of a very restricted form. In this paper we substantially extend the characterization of canonical systems to (n, k)-ary quantifiers, which bind k distinct variables and connect n formulas, and show that the coherence criterion remains constructive for such systems. Then we focus on the case of k ∈ {0, 1} and show that the following statements concerning a canonical calculus G are equivalent: (i) G is coherent, (ii) G has a strongly characteristic 2Nmatrix, and (iii) G admits strong cut-elimination. We also show that coherence is not a necessary condition for standard cut-elimination, and then characterize a subclass of canonical systems for which this property does hold.
منابع مشابه
Strong Cut-Elimination, Coherence, and Non-deterministic Semantics
An (n, k)-ary quantifier is a generalized logical connective, binding k variables and connecting n formulas. Canonical systems with (n, k)-ary quantifiers form a natural class of Gentzen-type systems which in addition to the standard axioms and structural rules have only logical rules in which exactly one occurrence of a quantifier is introduced. The semantics for these systems is provided usin...
متن کاملCanonical Gentzen-Type Calculi with (n, k)-ary Quantifiers
Propositional canonical Gentzen-type systems, introduced in [1], are systems which in addition to the standard axioms and structural rules have only logical rules in which exactly one occurrence of a connective is introduced and no other connective is mentioned. [1] provides a constructive coherence criterion for the non-triviality of such systems and shows that a system of this kind admits cut...
متن کاملA Triple Correspondence in Canonical Calculi: Strong Cut-Elimination, Coherence, and Non-deterministic Semantics
An (n, k)-ary quantifier is a generalized logical connective, binding k variables and connecting n formulas. Canonical systems with (n, k)-ary quantifiers form a natural class of Gentzen-type systems which in addition to the standard axioms and structural rules have only logical rules in which exactly one occurrence of a quantifier is introduced. The semantics for these systems is provided usin...
متن کاملGeneralized Non-deterministic Matrices and (n, k)-ary Quantifiers
An (n, k)-ary quantifier is a generalized logical connective, binding k variables and connecting n formulas. Canonical Gentzen-type systems with (n, k)-ary quantifiers are systems which in addition to the standard axioms and structural rules have only logical rules in which exactly one occurrence of an (n, k)-ary quantifier is introduced. The semantics of such systems for the case of k ∈ {0, 1}...
متن کاملCanonical (m,n)−ary hypermodules over Krasner (m,n)−ary hyperrings
The aim of this research work is to define and characterize a new class of n-ary multialgebra that may be called canonical (m, n)&minus hypermodules. These are a generalization of canonical n-ary hypergroups, that is a generalization of hypermodules in the sense of canonical and a subclasses of (m, n)&minusary hypermodules. In addition, three isomorphism theorems of module theory and canonical ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Logical Methods in Computer Science
دوره 4 شماره
صفحات -
تاریخ انتشار 2008